Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Med Genet ; 61(2): 150-154, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37580114

RESUMO

BACKGROUND: Low-impact genetic variants identified in population-based genetic studies are not routinely measured as part of clinical genetic testing in familial breast cancer (BC). We studied the consequences of integrating an established Polygenic Risk Score (PRS) (BCAC 313, PRS313) into clinical sequencing of women with familial BC in Sweden. METHODS: We developed an add-on sequencing panel to capture 313 risk variants in addition to the clinical screening of hereditary BC genes. Index patients with no pathogenic variant from 87 families, and 1000 population controls, were included in comparative PRS calculations. Including detailed family history, sequencing results and tumour pathology information, we used BOADICEA (Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm) V.6 to estimate contralateral and lifetime risks without and with PRS313. RESULTS: Women with BC but no pathogenic variants in hereditary BC genes have a higher PRS313 compared with population controls (mean+0.78 SD, p<3e-9). Implementing PRS313 in the clinical risk estimation before their BC diagnosis would have changed the recommended follow-up in 24%-45% of women. CONCLUSIONS: Our results show the potential impact of incorporating PRS313 directly in the clinical genomic investigation of women with familial BC.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Neoplasias da Mama/diagnóstico , Predisposição Genética para Doença , Testes Genéticos , Fatores de Risco
2.
Sci Rep ; 13(1): 12856, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553382

RESUMO

X-chromosome inactivation (XCI) analyses often assist in diagnostics of X-linked traits, however accurate assessment remains challenging with current methods. We developed a novel strategy using amplification-free Cas9 enrichment and Oxford nanopore technologies sequencing called XCI-ONT, to investigate and rigorously quantify XCI in human androgen receptor gene (AR) and human X-linked retinitis pigmentosa 2 gene (RP2). XCI-ONT measures methylation over 116 CpGs in AR and 58 CpGs in RP2, and separate parental X-chromosomes without PCR bias. We show the usefulness of the XCI-ONT strategy over the PCR-based golden standard XCI technique that only investigates one or two CpGs per gene. The results highlight the limitations of using the golden standard technique when the XCI pattern is partially skewed and the advantages of XCI-ONT to rigorously quantify XCI. This study provides a universal XCI-method on DNA, which is highly valuable in clinical and research framework of X-linked traits.


Assuntos
Sequenciamento por Nanoporos , Humanos , DNA , Genes Ligados ao Cromossomo X , Inativação do Cromossomo X/genética , Cromossomos Humanos X/genética
3.
Eur J Hum Genet ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277488

RESUMO

RNA binding motif protein X-linked (RBMX) encodes the heterogeneous nuclear ribonucleoprotein G (hnRNP G) that regulates splicing, sister chromatid cohesion and genome stability. RBMX knock down experiments in various model organisms highlight the gene's importance for brain development. Deletion of the RGG/RG motif in hnRNP G has previously been associated with Shashi syndrome, however involvement of other hnRNP G domains in intellectual disability remain unknown. In the current study, we present the underlying genetic and molecular cause of Gustavson syndrome. Gustavson syndrome was first reported in 1993 in a large Swedish five-generation family presented with profound X-linked intellectual disability and an early death. Extensive genomic analyses of the family revealed hemizygosity for a novel in-frame deletion in RBMX in affected individuals (NM_002139.4; c.484_486del, p.(Pro162del)). Carrier females were asymptomatic and presented with skewed X-chromosome inactivation, indicating silencing of the pathogenic allele. Affected individuals presented minor phenotypic overlap with Shashi syndrome, indicating a different disease-causing mechanism. Investigation of the variant effect in a neuronal cell line (SH-SY5Y) revealed differentially expressed genes enriched for transcription factors involved in RNA polymerase II transcription. Prediction tools and a fluorescence polarization assay imply a novel SH3-binding motif of hnRNP G, and potentially a reduced affinity to SH3 domains caused by the deletion. In conclusion, we present a novel in-frame deletion in RBMX segregating with Gustavson syndrome, leading to disturbed RNA polymerase II transcription, and potentially reduced SH3 binding. The results indicate that disruption of different protein domains affects the severity of RBMX-associated intellectual disabilities.

4.
Am J Med Genet A ; 188(6): 1676-1687, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35166435

RESUMO

The Nexilin F-Actin Binding Protein (Nexilin) encoded by NEXN is a cardiac Z-disc protein important for cardiac function and development in humans, zebrafish, and mice. Heterozygote variants in the human NEXN gene have been reported to cause dilated and hypertrophic cardiomyopathy. Homozygous variants in NEXN cause a lethal form of human fetal cardiomyopathy, only described in two patients before. In a Swedish, four-generation, non-consanguineous family comprising 42 individuals, one female had three consecutive pregnancies with intrauterine fetal deaths caused by a lethal form of dilated cardiomyopathy. Whole-exome sequencing and variant analysis revealed that the affected fetuses were homozygous for a NEXN variant (NM_144573:c.1302del;p.(Ile435Serfs*3)). Moreover, autopsy and histology staining declared that they presented with cardiomegaly and endocardial fibroelastosis. Immunohistochemistry staining for Nexilin in the affected fetuses revealed reduced antibody staining and loss of striation in the heart, supporting loss of Nexilin function. Clinical examination of seven heterozygote carriers confirmed dilated cardiomyopathy (two individuals), other cardiac findings (three individuals), or no cardiac deviations (two individuals), indicating incomplete penetrance or age-dependent expression of dilated cardiomyopathy. RNA sequencing spanning the variant in cDNA blood of heterozygote individuals revealed nonsense-mediated mRNA decay of the mutated transcripts. In the current study, we present the first natural course of the recessively inherited lethal form of human fetal cardiomyopathy caused by loss of Nexilin function. The affected family had uneventful pregnancies until week 23-24, followed by fetal death at week 24-30, characterized by cardiomegaly and endocardial fibroelastosis.


Assuntos
Cardiomegalia , Fibroelastose Endocárdica , Proteínas dos Microfilamentos , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Fibroelastose Endocárdica/genética , Fibroelastose Endocárdica/metabolismo , Fibroelastose Endocárdica/patologia , Feminino , Humanos , Imuno-Histoquímica , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Sequenciamento do Exoma
5.
Genome Biol ; 21(1): 290, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33261648

RESUMO

BACKGROUND: One ongoing concern about CRISPR-Cas9 genome editing is that unspecific guide RNA (gRNA) binding may induce off-target mutations. However, accurate prediction of CRISPR-Cas9 off-target activity is challenging. Here, we present SMRT-OTS and Nano-OTS, two novel, amplification-free, long-read sequencing protocols for detection of gRNA-driven digestion of genomic DNA by Cas9 in vitro. RESULTS: The methods are assessed using the human cell line HEK293, re-sequenced at 18x coverage using highly accurate HiFi SMRT reads. SMRT-OTS and Nano-OTS are first applied to three different gRNAs targeting HEK293 genomic DNA, resulting in a set of 55 high-confidence gRNA cleavage sites identified by both methods. Twenty-five of these sites are not reported by off-target prediction software, either because they contain four or more single nucleotide mismatches or insertion/deletion mismatches, as compared with the human reference. Additional experiments reveal that 85% of Cas9 cleavage sites are also found by other in vitro-based methods and that on- and off-target sites are detectable in gene bodies where short-reads fail to uniquely align. Even though SMRT-OTS and Nano-OTS identify several sites with previously validated off-target editing activity in cells, our own CRISPR-Cas9 editing experiments in human fibroblasts do not give rise to detectable off-target mutations at the in vitro-predicted sites. However, indel and structural variation events are enriched at the on-target sites. CONCLUSIONS: Amplification-free long-read sequencing reveals Cas9 cleavage sites in vitro that would have been difficult to predict using computational tools, including in dark genomic regions inaccessible by short-read sequencing.


Assuntos
Sequência de Bases , Sistemas CRISPR-Cas , Biologia Computacional/métodos , Edição de Genes/métodos , DNA , Variação Genética , Genômica , Células HEK293 , Humanos , Mutação , Sequenciamento por Nanoporos , RNA Guia de Cinetoplastídeos , Análise de Sequência de DNA , Software
6.
BMC Med Genet ; 21(1): 90, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32370745

RESUMO

BACKGROUND: ERF-related craniosynostosis are a rare, complex, premature trisutural fusion associated with a broad spectrum of clinical features and heterogeneous aetiology. Here we describe two cases with the same pathogenic variant and a detailed description of their clinical course. CASE PRESENTATION: Two subjects; a boy with a BLSS requiring repeated skull expansions and his mother who had been operated once for sagittal synostosis. Both developed intracranial hypertension at some point during the course, which was for both verified by formal invasive intracranial pressure monitoring. Exome sequencing revealed a pathogenic truncating frame shift variant in the ERF gene. CONCLUSIONS: Here we describe a boy and his mother with different craniosynostosis patterns, but both with verified intracranial hypertension and heterozygosity for a truncating variant of ERF c.1201_1202delAA (p.Lys401Glufs*10). Our work provides supplementary evidence in support of previous phenotypic descriptions of ERF-related craniosynostosis, particularly late presentation, an evolving synostotic pattern and variable expressivity even among affected family members.


Assuntos
Craniossinostoses/genética , Predisposição Genética para Doença , Hipertensão Intracraniana/genética , Proteínas Repressoras/genética , Adulto , Craniossinostoses/complicações , Craniossinostoses/patologia , Craniossinostoses/cirurgia , Feminino , Heterozigoto , Humanos , Lactente , Hipertensão Intracraniana/complicações , Hipertensão Intracraniana/patologia , Hipertensão Intracraniana/cirurgia , Masculino , Mães , Crânio/patologia , Crânio/cirurgia
7.
Sci Rep ; 9(1): 10730, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31341187

RESUMO

The TATA-box binding protein associated factor 1 (TAF1) protein is a key unit of the transcription factor II D complex that serves a vital function during transcription initiation. Variants of TAF1 have been associated with neurodevelopmental disorders, but TAF1's molecular functions remain elusive. In this study, we present a five-generation family affected with X-linked intellectual disability that co-segregated with a TAF1 c.3568C>T, p.(Arg1190Cys) variant. All affected males presented with intellectual disability and dysmorphic features, while heterozygous females were asymptomatic and had completely skewed X-chromosome inactivation. We investigated the role of TAF1 and its association to neurodevelopment by creating the first complete knockout model of the TAF1 orthologue in zebrafish. A crucial function of human TAF1 during embryogenesis can be inferred from the model, demonstrating that intact taf1 is essential for embryonic development. Transcriptome analysis of taf1 zebrafish knockout revealed enrichment for genes associated with neurodevelopmental processes. In conclusion, we propose that functional TAF1 is essential for embryonic development and specifically neurodevelopmental processes.


Assuntos
Histona Acetiltransferases/fisiologia , Deficiência Intelectual/genética , Sistema Nervoso/crescimento & desenvolvimento , Fatores Associados à Proteína de Ligação a TATA/fisiologia , Fator de Transcrição TFIID/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/crescimento & desenvolvimento , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Histona Acetiltransferases/genética , Humanos , Masculino , Retardo Mental Ligado ao Cromossomo X/genética , Sistema Nervoso/embriologia , Linhagem , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
8.
Eur J Med Genet ; 62(6): 103526, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30125677

RESUMO

Cornelia de Lange syndrome (CdLS) is a heterogeneous developmental disorder where 70% of clinically diagnosed patients harbor a variant in one of five CdLS associated cohesin proteins. Around 500 variants have been identified to cause CdLS, however only eight different alterations have been identified in the RAD21 gene, encoding the RAD21 cohesin complex component protein that constitute the link between SMC1A and SMC3 within the cohesin ring. We report a 15-month-old boy presenting with developmental delay, distinct CdLS-like facial features, gastrointestinal reflux in early infancy, testis retention, prominent digit pads and diaphragmatic hernia. Exome sequencing revealed a novel RAD21 variant, c.1774_1776del, p.(Gln592del), suggestive of CdLS type 4. Segregation analysis of the two healthy parents confirmed the variant as de novo and bioinformatic analysis predicted the variant as disease-causing. Assessment by in silico structural model predicted that the p.Gln592del variant results in a discontinued contact between RAD21-Lys591 and the SMC1A residues Glu1191 and Glu1192, causing changes in the RAD21-SMC1A interface. In conclusion, we report a patient that expands the clinical description of CdLS type 4 and presents with a novel RAD21 p.(Glu592del) variant that causes a disturbed RAD21-SMC1A interface according to in silco structural modeling.


Assuntos
Síndrome de Cornélia de Lange/genética , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Fenótipo , Fosfoproteínas/genética , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Síndrome de Cornélia de Lange/patologia , Humanos , Lactente , Masculino , Proteínas Nucleares/química , Fosfoproteínas/química , Domínios Proteicos
9.
Hum Mutat ; 39(9): 1262-1272, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29932473

RESUMO

Amplification of DNA is required as a mandatory step during library preparation in most targeted sequencing protocols. This can be a critical limitation when targeting regions that are highly repetitive or with extreme guanine-cytosine (GC) content, including repeat expansions associated with human disease. Here, we used an amplification-free protocol for targeted enrichment utilizing the CRISPR/Cas9 system (No-Amp Targeted sequencing) in combination with single molecule, real-time (SMRT) sequencing for studying repeat elements in the huntingtin (HTT) gene, where an expanded CAG repeat is causative for Huntington disease. We also developed a robust data analysis pipeline for repeat element analysis that is independent of alignment of reads to a reference genome. The method was applied to 11 diagnostic blood samples, and for all 22 alleles the resulting CAG repeat count agreed with previous results based on fragment analysis. The amplification-free protocol also allowed for studying somatic variability of repeat elements in our samples, without the interference of PCR stutter. In summary, with No-Amp Targeted sequencing in combination with our analysis pipeline, we could accurately study repeat elements that are difficult to investigate using PCR-based methods.


Assuntos
Genoma Humano/genética , Proteína Huntingtina/genética , Doença de Huntington/genética , Expansão das Repetições de Trinucleotídeos/genética , Alelos , Ataxina-10/genética , Proteína C9orf72/genética , Sistemas CRISPR-Cas/genética , Proteína do X Frágil de Retardo Mental/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doença de Huntington/patologia , RNA Guia de Cinetoplastídeos/genética , Análise de Sequência de DNA
10.
Am J Med Genet A ; 176(6): 1405-1410, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29663639

RESUMO

Arthrogryposis multiplex congenita (AMC) is a heterogeneous disorder characterized by multiple joint contractures often in association with other congenital abnormalities. Pretibial linear vertical creases are a rare finding associated with arthrogryposis, and the etiology of the specific condition is unknown. We aimed to genetically and clinically characterize a boy from a consanguineous family, presenting with AMC and pretibial vertical linear creases on the shins. Whole exome sequencing and variant analysis revealed homozygous novel missense variants of ECEL1 (c.1163T > C, p.Leu388Pro, NM_004826) and MUSK (c.2572C > T, p.Arg858Cys, NM_005592). Both variants are predicted to have deleterious effects on the protein function, with amino acid positions highly conserved among species. The variants segregated in the family, with healthy mother, father, and sister being heterozygous carriers and the index patient being homozygous for both mutations. We report on a unique patient with a novel ECEL1 homozygous mutation, expanding the phenotypic spectrum of Distal AMC Type 5D to include vertical linear skin creases. The homozygous mutation in MUSK is of unknown clinical significance. MUSK mutations have previously shown to cause congenital myasthenic syndrome, a neuromuscular disorder with defects in the neuromuscular junction.


Assuntos
Artrogripose/genética , Metaloendopeptidases/genética , Mutação de Sentido Incorreto , Artrogripose/etiologia , Consanguinidade , Feminino , Luxação do Quadril/diagnóstico por imagem , Humanos , Lactente , Masculino , Linhagem , Fenótipo , Receptores Proteína Tirosina Quinases/genética , Receptores Colinérgicos/genética , Pele/patologia , Sequenciamento do Exoma
11.
Hereditas ; 154: 16, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29270100

RESUMO

BACKGROUND: Genealogy and molecular genetic studies of a Swedish river valley population resulted in a large pedigree, showing that the hereditary hemochromatosis (HH) HFE/p.C282Y mutation is inherited with other recessive disorders such as Wilson´s disease (WND), a rare recessive disorder of copper overload. The population also contain individuals with the Swedish long QT syndrome (LQTS1) founder mutation (KCNQ1/p.Y111C) which in homozygotes causes the Jervell & Lange Nielsen syndrome (JLNS) and hearing loss (HL).Aims of the study were to test whether the Swedish long QT founder mutation originated in an ancestral HFE family and if carriers had an increased risk for hemochromatosis (HH), a treatable disorder. We also aimed to identify the pathogenic mutation causing the hearing loss disorder segregating in the pedigree. METHODS: LQTS patients were asked about their ancestry and possible origin in a HH family. They were also offered a predictive testing for the HFE genotype. Church books were screened for families with hearing loss. One HH family had two members with hearing loss, who underwent molecular genetic analysis of the LQTS founder mutation, connexin 26 and thereafter exome sequencing. Another family with hearing loss in repeat generations was also analyzed for connexin 26 and underwent exome sequencing. RESULTS: Of nine LQTS patients studied, four carried a HFE mutation (two p.C282Y, two p.H63D), none was homozygous. Three LQTS patients confirmed origin in a female founder ( b 1694, identical to AJ b 1694, a HFE pedigree member from the Fax river. Her descent of 44 HH families, included also 29 families with hearing loss (HL) suggesting JLNS. Eleven LQTS probands confirmed origin in a second founder couple (b 1614/1605) in which the woman b 1605 was identical to a HFE pedigree member from the Fjällsjö river. In her descent there were not only 64 HH, six WND families, one JLNS, but also 48 hearing loss families. Most hearing loss was non syndromic and caused by founder effects of the late 16th century. One was of Swedish origin carrying the WHRN, c.1977delC, (p.S660Afs*30) mutation, the other was a TMC1(NM_138691),c.1814T>C,(p.L605P) mutation, possibly of Finnish origin. CONCLUSIONS: Deep human HFE genealogies show HFE to be associated with other genetic disorders like Wilson´s disease, LQTS, JLNS, and autosomal recessive hearing loss. Two new homozygous HL mutations in WHRN/p.S660Afs*30 and TMC1/p.L605P were identified,none of them previously reported from Scandinavia. The rarity of JLNS was possibly caused by miscarriage or intrauterine death. Most hearing loss (81.7%) was seen after 1844 when first cousin marriages were permitted. However, only 10 (10.3%) came from 1st cousin unions and only 2 (2.0 %) was born out of wedlock.


Assuntos
Efeito Fundador , Perda Auditiva Neurossensorial/genética , Hemocromatose/genética , Degeneração Hepatolenticular/genética , Síndrome de Jervell-Lange Nielsen/genética , Proteínas de Membrana/genética , Análise Mutacional de DNA , Feminino , Heterozigoto , Humanos , Masculino , Mutação , Linhagem , Suécia
12.
Prenat Diagn ; 37(11): 1146-1154, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28921562

RESUMO

OBJECTIVE: De novo mutations contribute significantly to severe early-onset genetic disorders. Even if the mutation is apparently de novo, there is a recurrence risk due to parental germ line mosaicism, depending on in which gonadal generation the mutation occurred. METHODS: We demonstrate the power of using SMRT sequencing and ddPCR to determine parental origin and allele frequencies of de novo mutations in germ cells in two families whom had undergone assisted reproduction. RESULTS: In the first family, a TCOF1 variant c.3156C>T was identified in the proband with Treacher Collins syndrome. The variant affects splicing and was determined to be of paternal origin. It was present in <1% of the paternal germ cells, suggesting a very low recurrence risk. In the second family, the couple had undergone several unsuccessful pregnancies where a de novo mutation PTPN11 c.923A>C causing Noonan syndrome was identified. The variant was present in 40% of the paternal germ cells suggesting a high recurrence risk. CONCLUSIONS: Our findings highlight a successful strategy to identify the parental origin of mutations and to investigate the recurrence risk in couples that have undergone assisted reproduction with an unknown donor or in couples with gonadal mosaicism that will undergo preimplantation genetic diagnosis.


Assuntos
Análise Mutacional de DNA/métodos , Disostose Mandibulofacial/diagnóstico , Síndrome de Noonan/diagnóstico , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Feminino , Humanos , Masculino , Mosaicismo , Gravidez , Diagnóstico Pré-Implantação , Medição de Risco
14.
Hum Mol Genet ; 26(6): 1070-1077, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28158657

RESUMO

Revertant mosaicism (RM) is a naturally occurring phenomenon where the pathogenic effect of a germline mutation is corrected by a second somatic event. Development of healthy-looking skin due to RM has been observed in patients with various inherited skin disorders, but not in connexin-related disease. We aimed to clarify the underlying molecular mechanisms of suspected RM in the skin of a patient with keratitis-ichthyosis-deafness (KID) syndrome. The patient was diagnosed with KID syndrome due to characteristic skin lesions, hearing deficiency and keratitis. Investigation of GJB2 encoding connexin (Cx) 26 revealed heterozygosity for the recurrent de novo germline mutation, c.148G > A, p.Asp50Asn. At age 20, the patient developed spots of healthy-looking skin that grew in size and number within widespread erythrokeratodermic lesions. Ultra-deep sequencing of two healthy-looking skin biopsies identified five somatic nonsynonymous mutations, independently present in cis with the p.Asp50Asn mutation. Functional studies of Cx26 in HeLa cells revealed co-expression of Cx26-Asp50Asn and wild-type Cx26 in gap junction channel plaques. However, Cx26-Asp50Asn with the second-site mutations identified in the patient displayed no formation of gap junction channel plaques. We argue that the second-site mutations independently inhibit Cx26-Asp50Asn expression in gap junction channels, reverting the dominant negative effect of the p.Asp50Asn mutation. To our knowledge, this is the first time RM has been reported to result in the development of healthy-looking skin in a patient with KID syndrome.


Assuntos
Conexina 26/genética , Mutação em Linhagem Germinativa/genética , Ceratite/genética , Mosaicismo , Adulto , Conexina 26/biossíntese , Junções Comunicantes/genética , Junções Comunicantes/patologia , Regulação da Expressão Gênica , Genótipo , Células HeLa , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ceratite/patologia , Masculino , Mutação de Sentido Incorreto , Pele/metabolismo , Pele/patologia
15.
BMC Med Genet ; 16: 95, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26467218

RESUMO

BACKGROUND: Noonan syndrome (NS), a heterogeneous developmental disorder associated with variable clinical expression including short stature, congenital heart defect, unusual pectus deformity and typical facial features, is caused by activating mutations in genes involved in the RAS-MAPK signaling pathway. CASE PRESENTATION: Here, we present a clinical and molecular characterization of a small family with Noonan syndrome. Comprehensive mutation analysis of NF1, PTPN11, SOS1, CBL, BRAF, RAF1, SHOC2, MAP2K2, MAP2K1, SPRED1, NRAS, HRAS and KRAS was performed using targeted next-generation sequencing. The result revealed a recurrent mutation in NRAS, c.179G > A (p.G60E), in the index patient. This mutation was inherited from the index patient's father, who also showed signs of NS. CONCLUSIONS: We describe clinical features in this family and review the literature for genotype-phenotype correlations for NS patients with mutations in NRAS. Neither of affected individuals in this family presented with juvenile myelomonocytic leukemia (JMML), which together with previously published results suggest that the risk for NS individuals with a germline NRAS mutation developing JMML is not different from the proportion seen in other NS cases. Interestingly, 50% of NS individuals with an NRAS mutation (including our family) present with lentigines and/or Café-au-lait spots. This demonstrates a predisposition to hyperpigmented lesions in NRAS-positive NS individuals. In addition, the affected father in our family presented with a hearing deficit since birth, which together with lentigines are two characteristics of NS with multiple lentigines (previously LEOPARD syndrome), supporting the difficulties in diagnosing individuals with RASopathies correctly. The clinical and genetic heterogeneity observed in RASopathies is a challenge for genetic testing. However, next-generation sequencing technology, which allows screening of a large number of genes simultaneously, will facilitate an early and accurate diagnosis of patients with RASopathies.


Assuntos
Análise Mutacional de DNA/métodos , GTP Fosfo-Hidrolases/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas de Membrana/genética , Mutação , Síndrome de Noonan/genética , Síndrome de Noonan/patologia , Adulto , Manchas Café com Leite/epidemiologia , Manchas Café com Leite/genética , Feminino , Genes ras , Humanos , Lentigo , Leucemia Mielomonocítica Juvenil/epidemiologia , Masculino , Pessoa de Meia-Idade , Linhagem
16.
J Med Genet ; 52(3): 195-202, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25612909

RESUMO

BACKGROUND: Fetal akinesia deformation sequence syndrome (FADS, OMIM 208150) is characterised by decreased fetal movement (fetal akinesia) as well as intrauterine growth restriction, arthrogryposis, and developmental anomalies (eg, cystic hygroma, pulmonary hypoplasia, cleft palate, and cryptorchidism). Mutations in components of the acetylcholine receptor (AChR) pathway have previously been associated with FADS. METHODS AND RESULTS: We report on a family with recurrent fetal loss, where the parents had five affected fetuses/children with FADS and one healthy child. The fetuses displayed no fetal movements from the gestational age of 17 weeks, extended knee joints, flexed hips and elbows, and clenched hands. Whole exome sequencing of one affected fetus and the parents was performed. A novel homozygous frameshift mutation was identified in muscle, skeletal receptor tyrosine kinase (MuSK), c.40dupA, which segregated with FADS in the family. Haplotype analysis revealed a conserved haplotype block suggesting a founder mutation. MuSK (muscle-specific tyrosine kinase receptor), a component of the AChR pathway, is a main regulator of neuromuscular junction formation and maintenance. Missense mutations in MuSK have previously been reported to cause congenital myasthenic syndrome (CMS) associated with AChR deficiency. CONCLUSIONS: To our knowledge, this is the first report showing that a mutation in MuSK is associated with FADS. The results support previous findings that CMS and/or FADS are caused by complete or severe functional disruption of components located in the AChR pathway. We propose that whereas milder mutations of MuSK will cause a CMS phenotype, a complete loss is lethal and will cause FADS.


Assuntos
Anormalidades Múltiplas/genética , Artrogripose/genética , Junção Neuromuscular/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Colinérgicos/genética , Anormalidades Múltiplas/fisiopatologia , Artrogripose/fisiopatologia , Exoma/genética , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/fisiopatologia , Feto/fisiopatologia , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Recém-Nascido , Masculino , Mutação , Junção Neuromuscular/crescimento & desenvolvimento , Junção Neuromuscular/fisiopatologia , Linhagem , Transdução de Sinais
17.
Hum Mol Genet ; 23(16): 4315-27, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24705357

RESUMO

RASopathies, a family of disorders characterized by cardiac defects, defective growth, facial dysmorphism, variable cognitive deficits and predisposition to certain malignancies, are caused by constitutional dysregulation of RAS signalling predominantly through the RAF/MEK/ERK (MAPK) cascade. We report on two germline mutations (p.Gly39dup and p.Val55Met) in RRAS, a gene encoding a small monomeric GTPase controlling cell adhesion, spreading and migration, underlying a rare (2 subjects among 504 individuals analysed) and variable phenotype with features partially overlapping Noonan syndrome, the most common RASopathy. We also identified somatic RRAS mutations (p.Gly39dup and p.Gln87Leu) in 2 of 110 cases of non-syndromic juvenile myelomonocytic leukaemia, a childhood myeloproliferative/myelodysplastic disease caused by upregulated RAS signalling, defining an atypical form of this haematological disorder rapidly progressing to acute myeloid leukaemia. Two of the three identified mutations affected known oncogenic hotspots of RAS genes and conferred variably enhanced RRAS function and stimulus-dependent MAPK activation. Expression of an RRAS mutant homolog in Caenorhabditis elegans enhanced RAS signalling and engendered protruding vulva, a phenotype previously linked to the RASopathy-causing SHOC2(S2G) mutant. Overall, these findings provide evidence of a functional link between RRAS and MAPK signalling and reveal an unpredicted role of enhanced RRAS function in human disease.


Assuntos
Carcinogênese/genética , Mutação/fisiologia , Fenótipo , Proteínas ras/genética , Animais , Caenorhabditis elegans , Estudos de Coortes , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mielomonocítica Juvenil/genética , MAP Quinase Quinase Quinases/metabolismo , Síndrome de Noonan/genética , Proteína Oncogênica v-akt/metabolismo , Transdução de Sinais/genética , Proteínas ras/química , Proteínas ras/metabolismo
18.
Acta Ophthalmol ; 92(5): 412-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23889849

RESUMO

PURPOSE: To investigate whether patients registered at a low-vision centre with 'nystagmus' had any underlying, but so far unknown, ophthalmic diagnosis. METHODS: All patients registered at the low-vision centre of Uppsala county with nystagmus as their major diagnosis were identified. Their medical records were studied to exclude those with other general diagnoses that could explain the nystagmus. The remaining group of patients underwent an ophthalmic examination, refraction and optical coherence tomography (OCT). Electroretinogram and genetic analyses were performed when indicated. RESULTS: Sixty-two patients with nystagmus as their main diagnosis were registered at the low-vision centre, Uppsala, and 43 of them had a major diagnosis other than nystagmus. Nystagmus was the major diagnosis in 19 patients, 15 of whom, aged 6-76 years, participated in the study. Two of the patients had foveal hypoplasia and albinism, four a seemingly isolated foveal hypoplasia, three achromatopsia, one rod-cone dystrophy, one degenerative high myopia, and two could not be evaluated. Only two patients appeared to have 'congenital' nystagmus. Eleven of the patients underwent a comprehensive genetic investigation of the PAX 6 gene. In addition, four of the patients were analysed for mutations in FOXC1 and PITX2 and one in FRMD7. No mutations were found in any of the patients analysed. CONCLUSION: The study illustrates that many patients in our study group with nystagmus had underlying ophthalmic diagnoses. Early diagnosis is important to facilitate habilitation and to provide genetic counselling and, in the future, possibly also gene therapy.


Assuntos
Albinismo Ocular/diagnóstico , Defeitos da Visão Cromática/diagnóstico , Anormalidades do Olho/diagnóstico , Fóvea Central/anormalidades , Miopia Degenerativa/diagnóstico , Nistagmo Congênito/diagnóstico , Adolescente , Adulto , Idoso , Albinismo Ocular/genética , Criança , Defeitos da Visão Cromática/genética , Análise Mutacional de DNA , Eletrorretinografia , Anormalidades do Olho/genética , Proteínas do Olho/genética , Feminino , Fatores de Transcrição Forkhead/genética , Proteínas de Homeodomínio/genética , Humanos , Masculino , Pessoa de Meia-Idade , Miopia Degenerativa/genética , Nistagmo Congênito/genética , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Sistema de Registros , Proteínas Repressoras/genética , Tomografia de Coerência Óptica , Fatores de Transcrição/genética , Baixa Visão/diagnóstico
19.
Am J Med Genet A ; 164A(3): 579-87, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24357598

RESUMO

Neurofibromatosis-Noonan syndrome (NFNS) is a rare condition with clinical features of both neurofibromatosis type 1 (NF1) and Noonan syndrome (NS). All three syndromes belong to the RASopathies, which are caused by dysregulation of the RAS-MAPK pathway. The major gene involved in NFNS is NF1, but co-occurring NF1 and PTPN11 mutations in NFNS have been reported. Knowledge about possible involvement of additional RASopathy-associated genes in NFNS is, however, very limited. We present a comprehensive clinical and molecular analysis of eight affected individuals from three unrelated families displaying features of NF1 and NFNS. The genetic etiology of the clinical phenotypes was investigated by mutation analysis, including NF1, PTPN11, SOS1, KRAS, NRAS, BRAF, RAF1, SHOC2, SPRED1, MAP2K1, MAP2K2, and CBL. All three families harbored a heterozygous NF1 variant, where the first family had a missense variant, c.5425C>T;p.R1809C, the second family a recurrent 4bp-deletion, c.6789_6792delTTAC;p.Y2264Tfs*6, and the third family a splice-site variant, c.2991-1G>A, resulting in skipping of exon 18 and an in-frame deletion of 41 amino acids. These NF1 variants have all previously been reported in NF1 patients. Surprisingly, both c.6789_6792delTTAC and c.2991-1G>A are frequently associated with NF1, but association to NFNS has, to our knowledge, not previously been reported. Our results support the notion that NFNS represents a variant of NF1, genetically distinct from NS, and is caused by mutations in NF1, some of which also cause classical NF1. Due to phenotypic overlap between NFNS and NS, we propose screening for NF1 mutations in NS patients, preferentially when café-au-lait spots are present.


Assuntos
Estudos de Associação Genética , Mutação , Neurofibromatoses/diagnóstico , Neurofibromatoses/genética , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/genética , Síndrome de Noonan/diagnóstico , Síndrome de Noonan/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Análise Mutacional de DNA , Facies , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Adulto Jovem
20.
Am J Med Genet A ; 155A(6): 1217-24, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21548061

RESUMO

Noonan syndrome (NS) is a heterogeneous disorder caused by activating mutations in the RAS-MAPK signaling pathway. It is associated with variable clinical expression including short stature, congenital heart defect, unusual pectus deformity, and typical facial features and the inheritance is autosomal dominant. Here, we present a clinical and molecular characterization of a patient with Noonan-like syndrome with loose anagen hair phenotype and additional features including mild psychomotor developmental delay, osteoporosis, gingival hyperplasia, spinal neuroblastoma, intrathoracic extramedullary hematopoiesis, and liver hemangioma. Mutation analysis of PTPN11, SOS1, RAF1, KRAS, BRAF, MEK1, MEK2, NRAS, and SHOC2 was conducted, revealing a co-occurrence of two heterozygous previously identified mutations in the index patient. The mutation SHOC2 c.4A > G; p.Ser2Gly represents a de novo mutation, whereas, PTPN11 c.1226G > C; p.Gly409Ala was inherited from the mother and also identified in the brother. The mother and the brother present with some NS manifestations, such as short stature, delayed puberty, keratosis pilaris, café-au-lait spots, refraction error (mother), and undescended testis (brother), but no NS facial features, supporting the notion that the PTPN11 p.Gly409Ala mutation leads to a relatively mild phenotype. We propose that, the atypical phenotype of the young woman with NS reported here is an additive effect, where the PTPN11 mutation acts as a modifier. Interestingly, co-occurrence of RAS-MAPK mutations has been previously identified in a few patients with variable NS or neurofibromatosis-NS phenotypes. Taken together, the results suggest that co-occurrence of mutations or modifying loci in the RAS-MAPK pathway may contribute to the clinical variability observed among NS patients.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Síndrome de Noonan/genética , Síndrome de Noonan/patologia , Fenótipo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Sequência de Bases , Criança , Análise Mutacional de DNA , Feminino , Humanos , Dados de Sequência Molecular , Mutação/genética , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...